Clinically Relevant Anaerobes

Morgan A. Pence, PhD, D(ABMM)

Director, Clinical and Molecular Microbiology
Cook Children's Medical Center
Fort Worth, TX
morgan.pence@cookchildrens.org

CookChildren's

Financial Disclosures: None

Objectives

- Review appropriate specimens for anaerobic culture
- Identify best practices for specimen transport and culture
- · Compare methods for identification of anaerobes
- Discuss susceptibility testing of anaerobes

Clinical Presentations of Anaerobic Infections

- Abdominal abscesses
- Bacteremia
- Lemierre's syndrome (thrombophlebitis of the internal jugular vein)
- Most commonly associated with Fusobacterium necrophorum
- Prosthetic joint infections
- Most notably Cutibacterium acnes
- Cervicofacial infections/lumpy jaw
 Most commonly associated with Actinomyces
- Gas gangrene/myonecrosis
- Clostridoides difficile infection (CDI)
 - Will not cover since infection is typically diagnosed by EIA or PCR

Taxonomy Update:

Anaerobic GPC formerly known as Peptostreptococcus species

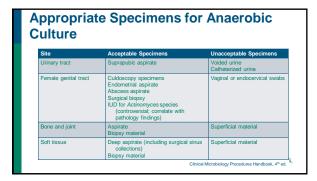
Former Name	Current Name
Peptostreptococcus prevotii, tetradius, vaginalis	Anaerococcus species
Peptostreptococcus parvulus/Streptococcus parvulus	Atopobium parvulum
Peptostreptococcus productus/Ruminococcus productus	Blautia producta
Peptostreptococcus magnus	Finegoldia magna
Peptostreptococcus banesae	Gallicola barnesae
Peptostreptococcus micros/Micromonas micros	Parvimonas micra
Peptostreptococcus asaccharolyticus, harei, indolicus	Peptoniphilus species
Peptostreptococcus heliotrinireducens	Slackia heliotrinireducens

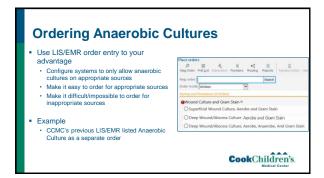
- A few Peptostreptococcus species remain
 Most notably Peptostreptococcus anaerobius
- Biochemical methods do not provide an accurate identification
- Must use MALDI or sequencing

Taxonomy Update:

Anaerobic Gram negative cocci

- Previously, any anaerobic GNC was identified as Veillonella spp.
- Other anaerobic GNC have been identified:
- Acidaminococcus spp.
- Megasphaera spp.
- Anaeroglobus spp.
- Negativicoccus spp.




- Veillonella spp. can be differentiated based on nitrate positivity
- Other genera cannot be identified by biochemical methods
- Must use MALDI or sequencing

Taxonomy Update: Gram positive rods Former Name New Name Propionibacterium acnes Propionibacterium avidum Clostridium difficile Clostridioides difficile CookChildre's Medica Conter

Appropriate Specimens for Anaerobic Culture Site Acceptable Specimens Unacceptable Specimens Head and neck Abscess aspirate Bicpsy material Stronchial brushing Material Fronchial brushing Material from percutaneous lung puncture Bronchoalveolar lavage Transtracheal aspirate Transtracheal aspirate Bronchoalveolar lavage Transtracheal Abscess aspirate Bicpsy CSF Abdomen Pertinoneal fluid Abscess aspirate Bile Bilepsy material Bile Bilepsy material Bile Bilepsy material Biles Bilepsy material Biles Bilepsy Books Acceptable Biles Biles

Anaerobic Incubator/Chamber

- Gas mixture: 85-90% N₂, 5% H₂, 5-10% CO₂
- Working with plates in incubator minimizes exposure to oxygen and maintains organism viability

CookChildren's.

Pouch/Box System

- Water vs. water-free systems
- Water systems
 - Ampule crushed or water added to create anaerobic conditions
- Absorb O₂ and generate H₂
- Water-free systems
 - Sachets absorb O₂ without generation of H₂
- CO₂ levels may be higher than 10%

Anoxomat System (Advanced Instruments)

- Automated evacuation-replacement method
- · 3-5 minutes
- Gas mixture: 85% N₂, 5% H₂, 10% CO₂
- 0.16% residual oxygen content in the jar
 Catalyst is added to remove residual oxygen
- 9" x 12" footprint

Culture Conditions - Media

- Media should be reduced prior to inoculation
- Two options
 - Reduce media in-house (requires 24 h)
 - · Track volumes to ensure appropriate amount of plates are reduced
 - Commercial pre-reduced anaerobically sterilized (PRAS) media
 - Oxygen-free packaging
 - Packaged in single packs, multipacks or combo packs

Culture Conditions - Media

- Oxyrase enzyme added to media that reduces oxygen
- Oxyrase, Inc. produces OxyPRAS plates, which are PRAS plates that contain oxyrase
 - Maintain anaerobic environment on the benchtop for 2 hours prior to inoculation
- Also produces OxyDish a self-contained environment

Culture Conditions - Media

- Solid media
 - Brucella blood agar, CDC blood agar or other enriched, nonselective media
 - Phenyethyl alcohol (PEA)
 Aerobic and anaerobic Gram positive organisms and a
 - Aerobic and anaerobic Gram positive organisms and anaerobic Gram negative rox
 Laked blood with kanamycin and vancomycin (LKV)
 - Gram negative rods
 Not all anaerobic GNRs will grow → most notably Fusobacterium
 - Not all anaerobic GNRs will grow → most
 Bacteroides bile esculin agar (BBE)
 - Bacteroides fragilis group
 Bilophila wadsworthia

Culture Conditions - Media Additional selective agars Fusobacterium selective agar (FSA) Egg yolk agar (EYA) Guardemenspe. Cleardemspe. Broth media Enriched thioglycolate Chopped meat Anaerobic blood culture bottles Blood cultures Added benefit: many aerobes often grow faster in anaerobic bottles Sterile body fluids

Culture Conditions - Media

- What about CSF?
 - · When is anaerobic culture appropriate for CSF?
 - · Head injuries, head surgery, head and neck cancers, shunts
 - · ENT infections: chronic otitis media and sinusitis, dental abscesses
 - Gl disease
 - · Many labs use thioglycolate broth as a catch-all for anaerobic bacteria
 - Utility is questionable may cause more contamination/confusion than diagnosing true infections
 - One study showed an increased recovery of anaerobes by adding a PRAS Brucella blood agar plate to routine CSF cultures

I Clin Microbiol 2014: 52(6):1924-0

Culture Conditions – Incubation Length

- Incubation length
- Incubate 5-7 days
- Anaerobic blood agar should be held for the full incubation period
- · Selective agars may be discarded after 4 days
- Read plates after 24 or 48 hours
 - 24 h if using anaerobic chamber/incubator
 - 48 h for other methods

Incubation Length - Special Considerations

- Requests (or sites where isolation is likely) for Cutibacterium acnes should be held 14 days
- Requests for Actinomyces should be held 10-14 days

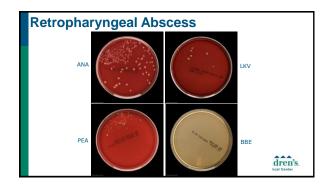
CookChildren's.

Examining Plates

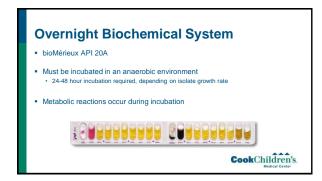
- Minimize time plates are exposed to air
- As little as a 10 min exposure can kill some anaerobes
- Reduced media may oxidize quickly

Workup of Anaerobic Cultures

- Workup practices vary by laboratory
- In many cases, knowing anaerobes are present is sufficient
 - However, important to identify potent/potentially resistant pathogens
 B. fragilis group


 - · C. perfringens
- Always compare growth to aerobic media
 - e.g. If three types of oropharyngeal flora are growing aerobically, and there is one true anaerobic GNR (such as *Prevotella*), include with normal flora, unless clearly

Workup "Sterile" specimens - If <3 organisms present (aerobes + anaerobes), work up all organisms • If ≥3 organisms, check source in EMR - Source may not be "sterile" (e.g. tissue from decubitus ulcer) CookChildren's.


Growth Characterist	tics	
Colony Morphology	Possible Identification	
"Bread crumb"	Fusobacterium nucleatum	
"Fried egg"	Fusobacterium necrophorum, Fusobacterium varium	
Double zone of beta-hemolysis	Clostridium perfringens	1
Fluorescence – brick red	Porphyromonas spp. (except P. gingivalis) pigmented Prevotella spp. Veillonella spp. Eggerthella lenta	
Fluorescence – chartreuse (yellow- green)	Fusobacterium spp. Clostridium difficile Clostridium innocuum	
Large with irregular margin/spread	Clostridium spp.	
"Molar tooth"	Actinomyces spp.	
Pigmentation – black or tan	Porphyromonas spp. Pigmented Prevotella spp.	
Swarming	Clostridium septicum Clostridium sordellii Clostridium tetani	dren

Aerotolerance Test Must be performed on all isolates that meet workup guidelines If using MALDI or sequencing, an aerotolerance test is unnecessary Use anaerobic blood agar and chocolate agar Otherwise, may "identify" Haemophilus, Aggregatibacter, nutritionally variant streptococci, etc. as anaerobes

Special Potency Disks Organism Kanamycin Vancomycin Touig 1,000 ug 5 ug 10 ug 10 ug 10 ug 5 ug 10 ug

Biochemical Identification Many biochemical methods are available for assistance with identification of anaerobes Some of the more commonly used biochemicals are: Anaerobic catalase Anaerobic indole Egg yolk agar for lipase and lecithinase Sodium polyanethol sulfonate (SPS) disks Presumptive identification of P. anaerobius Nitrate disks Presumptive identification of Veilibnella spp. Nitrate disks can cause false-negative indole result

Biochemical Systems - Performance

- Correct identification to genus-level
 - Crystal Anaerobe ID: 75%
 - Vitek ANC: 71-79%
 - · RapID ANA II: 81%
 - · But had higher rate of misidentifications than Crystal and RapID ANA II
 - Rapid ID 32A: 87%
- Species-level identification rates: 50-60%

Anaerobe, 2010;16:355-6 J Clin Microbiol, 2011;49(5):1745-Anaerobe, 2014;30:126-Anaerobe, 2016;42:101-

Limitations of Biochemical Methods

- Reactions can be difficult to interpret
- Databases are not routinely updated
- Cannot accurately identify anaerobic Gram positive cocci
- Issues with species-level identification of Clostridium spp. and B. fragilis group

Limitations of Biochemical Methods CAP D-B Survey 2017

Identification of Propionibacterium granulosum

Table 2. Identification Methods

Anaerobic method	No. of users	Correct genus and/or species (%)	Propionibacterium granulosum (%)	Propionibacterium sp. (%)	Peptostreptococcus anaerobius (%)
MALDI	281	93.6	57.7	35.9	0.7
Sequencing	15	93.4	66.7	26.7	0.0
Rapid ID 32A	18	72.2	61.1	11.1	11.1
BD BBL Crystal	17	64.7	52.9	11.8	0.0
API-20	34	52.9	14.7	38.2	2.9
Microscan	58	44.8	31.0	13.8	12.1
IDS Rapid ANA II	563	33.4	19.9	13.5	37.3
Biochemical	234	14.5	0.4	14.1	0.4
Other	98	7.1	1.0	6.1	7.1
Micro Media	38	5.3	0.0	5.3	0.0
Vitek 2	347	3.8	0.9	2.9	45.8

Limitations of Biochemical Methods

- Utilize your resources!
 - · Gram stain to rule out GPC
 - Negative catalase would rule out P. anaerobius
- Subscribe to DEX (extended bacteriology) CAP survey even if you don't have MALDI or sequencing
 - Test your system see what you get!

16S Sequencing

- Gold standard for anaerobic identification
- Drawbacks
 - · Relatively slow turnaround time
 - · Technically challenging
 - Costly

MALDI-TOF Mass Spectrometry

- Vitek MS
 - · 92.5-99% to genus-level
 - 91.2% to species-level
- Bruker Microflex
 - 99% to genus-level
- 85.8-99% to species-level

Clin Microbial Infect, 2014;20(4):335 Diagn Microbial Infect Dis, 2014;79(2):144 Americke, 2016;42:101 PLoS One, 2017;12(5):e01779;

What to do with unusual identifications?

- Positive blood culture with Gram positive rods
 - · "Regular" rods
 - · Anaerobic growth only
- MALDI identification: Solobacterium moorei

Solobacterium moorei??

- e? → www.bacterio.net → Pubmed
- Characteristics
 - · Strict anaerobe
 - Non-sporeforming GPR
- Associated with:
- Halitosis
- · Bacteremia in immunocompromised hosts
- Our patient was an ED patient (discharged)
- Reported name with "questionable significance" comment

Other Unusual Identifications

- Eggerthia catenaformis
 - Formerly Lactobacillus catenaformis
- Murdochiella asaccharolytica
- · Anaerobic Gram positive coccus

Antimicrobial Resistance in Anaerobes

- in vitro resistance is increasing
 - · Varies by country and region
 - · Minimal outcomes (in vivo) data
- Clindamycin resistance increasing in all anaerobes
 - · Resistance to other drugs varies by group or genus
- Most significant increases in resistance seen with B. fragilis group
 - · All antimicrobials

CookChildren's.

Susceptibility Testing – General

- Most anaerobic infections are polymicrobial
 - Presence of anaerobes drives treatment → Susceptibility testing is often unnecessarv
 - · Debridement is most important!
 - If requested, testing may be limited to the organism most likely to be resistant (e.g. B. fragilis group) (CLSI M100)
- Susceptibility testing may be useful for monomicrobial sterile site infections
 - Brain abscesses, joint infections, endocarditis, etc.
- Hospitals may consider monitoring local resistance patterns

Susceptibility Testing Methods

- Brucella blood agar or broth (supplemented with hemin, Vitamin K and sheep
- Gold standard: agar dilution (42-48 h)

Susceptibility Testing Methods

- Broth microdilution (BMD) is only recommended for B. fragilis group members (46-48 h)
 - · BMD should not be used for testing other anaerobes
- Gradient diffusion/Etests
 - Can overestimate metronidazole resistance if anaerobiosis is inadequate
 - May have unacceptable very major error (VME) rates for some antimicrobials

Susceptibility Testing Methods

- β-lactamase testing
 - Refer to package insert to see which genera are approved for testing
 - If performed and positive, report as resistant to penicillin and ampicillin
 - $\beta\mbox{-lactamase}$ negative isolates may be resistant to penicillin and ampicillin by other mechanisms
 - If using a β -lactamase test, β -lactamase negative isolates should be confirmed

CLSI M100 – Appendix D – Updated! NOTE: Inclaim collected from selected US hospitals from 1 January 2013 to 21 December 2014: 17 April 1998 (Appendix Applie) Chronic

Anaerobic Organisms	Number of Strains cylin	Americality	sulbactam	Number of Strains		Piperacilin- tazobactam		Piperacilin- tazobactam		- Parkerski	Cenoxitin	Number of Strains		Ertapenem	Number of Strains		Impenem	Number of Strains		Meropenem
Percent susceptible (%8) and percent resistant (%R)°		%8	%R		%8	%R		%8	%R		%8	%R		148	%R		%8	%R		
Breakpoints, µg/ml.		≤8/4	≥32/16		×16/4	≥128/4		≤16	≥64		≤4	≥16		s4	≥16		≤4	≥ 16		
B. fragilis	129	84	2	1030	96	1	830	100	0	133	82	14	189	97	1	1505	93	5		
3. hetaioteomicron	76	82	6	252	87	0	258	13	54	-	-	-	70	100	0	328	99	0		
3. ovatus	30	80	3	206	94	0	177	20	34	19 ⁵	849	16 ^b	49	100	0	236	96	1		
3. vulgatus	20°	45°	151	168	92	0	153	73	14	-	-	_	35	97	0	171	96	4		
B. uniformis	190	84°	00	78	96	0	72	85	10	-	-	_	19 ³	100h	Ob	93	100	0		
Parabacteroides distasonis	279	59h	191	92	95	1	82	29	43	-	-	-	26 ^b	100h	0	119	97	2		
B. fragilis group without B. fragilis	172	74	8	796	91	0	742	36	36	199	84º	161-	199	100	0	947	98	1		
B. fragilis group (all 6 species isted)	301	78	5	1826	94	0	1572	70	17	152	82	14	388	98	0	2052 Source	96	4		

LSI M NOTE: Isolates collect D2. Anaerobic Organis	ted from	selected	d US hospi	itals from	n 1 Janua												
Anaerobic Organisms	Number of Strains		Ampicillin- sulbactam		Ampicillin- sulbactam		Piperacilin-	tazobactam	Number of Strains	Imipenen		Number of Strains		Meropenem	Number of Strains		Penicillin
Percent susceptible (%S) and percent resistant (%R) ^d		%S	%R		%S	%R		%8	%R		%S	%R		%S	%R		
Breakpoints, µg/mL		≤8/4	≥32/16		≤32/4	≥1284		≤4	≥16		≤4	≥16		≤0.5	≥2		
Prevotella spp.	29 ^b	97 ^b	3 ^b	63	100	0	29 ^b	100	0	92	98	0	63	100	0		
Fusobacterium spp . ^b	20 ^b	100 ^b	0p	55	96	2	75	95	4	20 ⁰	100 ^b	00					
Anaerobic gram- positive cocci [®]	2	25	J.	1853	99	1	134	99	0	1647	100	0	1647	100	0		
Cutibacterium (formerly Propioxibacterium) acnes	J	J	J	18 ^b	100 ^b	00	170	94 ^b	0р	ر	_	_	_	ر	_		
Clostridium perfringens	15 ^b	100 ^b	0	410	100	0	23 ^b	100 ^b	0b	417	100	0	402	90	4		
Clostridioides (formerly Clostridium) difficile ^c	76	99	0	542	93	0	480	69	4	609	99	0	533	6	37		
Other Clostridium		-1	-1	439	94	1	71	99	0	390	100	0	390	69	13		

Take Home Points

- Specimen transport is extremely important
 - · Improper transport can ruin a culture
- Consider the media and incubation conditions you use...help anaerobes grow!
- Time to identification is inversely proportional to clinical value
- MALDI is replacing biochemical methods for identification of anaerobes
- Susceptibility testing is often unnecessary
 - Use M100 as a resource

Resources

- General
 - CLSI M56-A: Principles and Procedures for Detection of Anaerobes in Clinical Specimens
 - Clinical Micro Procedures Handbook, 4th ed.
 - Manual of Clinical Microbiology, 11th ed.
- Nomenclature/Taxonomy
 - www.bacterio.net
 - JCM Mini Review
 J Clin Microbiol, 2017; 55:24–42
- Susceptibility Testing/Anaerobic Antibiogram
- CLSI M100

Questions?

Morgan A. Pence, PhD, D(ABMM)
Director, Clinical and Molecular Microbiology
Cook Children's Medical Center
Fort Worth, TX
morgan.pence@cookchildrens.org

